Field Sources¶
The superscreen.sources
module provides factory functions for a few convenient
superscreen.parameter.Parameter
classes used to define applied magnetic fields.
ConstantField¶
MonopoleField¶
- superscreen.sources.MonopoleField(r0=(0, 0, 0), nPhi0=1, vector=False)[source]¶
Returns a Parameter that computes the z-component of the field from a monopole (monopole) located at position
(x0, y0, z0)
containing a total ofnPhi0
flux quanta.\[\mu_0H_z(\vec{r}-\vec{r}_0) = \frac{n\Phi_0}{2\pi} \frac{(\vec{r}-\vec{r}_0)\cdot\hat{z}}{|(\vec{r}-\vec{r}_0)|^3}\]- Parameters:
- Return type:
- Returns:
A Parameter that returns the field in units of
Phi_0 / (length_units)**2
.
PearlVortexField¶
- superscreen.sources.PearlVortexField(*, r0=(0, 0, 0), Lambda=0, nPhi0=1, xs, ys)[source]¶
Returns a Parameter that computes the z-component of the field from a Pearl vortex located at position
(x0, y0, z0)
in a film with effective penetration depthLambda
(Pearl length2 * Lambda
) containing a total ofnPhi0
flux quanta.The field from a Pearl vortex located at is computed using a Fourier transform method. For a uniform thin film lying in the \(x-y\) plane with effective penetration depth \(\Lambda\) (Pearl length \(2\Lambda\)), the Fourier transform of the \(z\)-component of the field from a vortex containing \(n\) flux quanta located at the origin, \(x=y=z=0\), is given by:
\[\mathcal{F}\{\mu_0H_z\}(k_x, k_y, z) = \frac{n\Phi_0e^{-kz}}{1 + 2\Lambda k},\]where \(k=\sqrt{k_x^2 + k_y^2}\) and the quantity is in units of
Phi_0 / (length_units)**2
, wherelength_units
are the units ofxs
,ys
, etc. The field is calculated by inverse Fourier-transforming the above expression for an \(x-y\) plane defined by parametersxs
andys
, then interpolating the field to the desired coordinates. Note that the Fourier method may not be accurate ifxs
andys
are not sampled finely enough.See also
References: [Pearl-APL-1964], [Tafuri-PRL-2004].
- Parameters:
r0 (
Tuple
[float
,float
,float
]) – Coordinates of the Pearl vortex position.Lambda (
float
) – The effective penetration depth of the film in which the vortex lies.Lambda
is equal to half the Pearl length.nPhi0 (
Union
[int
,float
]) – Number of flux quanta contained in the monopole.xs (
ndarray
) – Vectors of x and y coordinates defining the the domain in which the field will be computed using a Fourier transform as described above.ys (
ndarray
) – Vectors of x and y coordinates defining the the domain in which the field will be computed using a Fourier transform as described above.
- Return type:
- Returns:
A Parameter that returns the out-of-plane field in units of
Phi_0 / (length_units)**2
.
DipoleField¶
- superscreen.sources.DipoleField(*, dipole_positions, dipole_moments, component=None, length_units='um', moment_units='mu_B')[source]¶
Returns a Parameter that computes a given component of the field from a distribution of dipoles with given moments (in units of the Bohr magneton) located at the given positions.
Given dipole positions \(\vec{r}_{0, i}\) and moments \(\vec{m}_i\), the magnetic field is:
\[\mu_0\vec{H}(\vec{r}) = \sum_i\frac{\mu_0}{4\pi} \frac{ 3\hat{r}_i(\hat{r}_i\cdot\vec{m}_i) - \vec{m}_i }{ |\vec{r}_i|^3 },\]where \(\vec{r}_i=(x, y, z) - \vec{r}_{0, i}\).
- Parameters:
dipole_positions (
Union
[ndarray
,Tuple
[float
,float
,float
]]) – Coordinates(x0_i, y0_i, z0_i)
of the position of each dipolei
. Shape(3, )
or(1, 3)
for a single dipole, or shape(m, 3)
for m dipoles.dipole_moments (
Union
[ndarray
,Tuple
[float
,float
,float
]]) – Dipole moments(mx_i, my_i, mz_i)
in units of the Bohr magneton. If dipole_moments has shape(3, )
or(1, 3)
, then all dipoles are assigned the same moment. Otherwise, dipole_moments must have shape(m, 3)
, i.e. the moment is specified for each dipole.component (
Optional
[str
]) – The component of the field to calculate: “x”, “y”, “z”, or None. If None, then the vector field (shape(m, 3)
) is returned.length_units (
str
) – The units for the positions coordinatesx
,y
,z
, anddipole_positions
.moment_units (
str
) – The units fordipole_moments
, for example the Bohr magneton “mu_B” or SI base units “A * m ** 2”.
- Return type:
- Returns:
A Parameter that computes a given component of the field \(\mu_0\vec{H}(x, y, z)\) in Tesla for a given distribution of dipoles.
- superscreen.sources.dipole_field(eval_coords, r0=(0, 0, 0), moment=(0, 0, 0))[source]¶
Returns the 3D field from a single dipole with the given moment (in units of amps * meters ** 2) located at the position
r0
, evaluated at coordinateseval_coords = [x, y, z]
.Given \(\vec{r}=(x, y, z) - \vec{r}_0\), the magnetic field is:
\[\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \frac{ 3\hat{r}(\hat{r}\cdot\vec{m}) - \vec{m} }{ |\vec{r}|^3 }\]- Parameters:
eval_coords (
ndarray
) – (x, y, z) coordinates (in meters) at which to evaluate the field. Either a sequence of length 3 (for a single position) or an array of shape(n, 3)
(forn
positions.).r0 (
Union
[ndarray
,Tuple
[float
,float
,float
]]) – Coordinates(x0, y0, z0)
(in meters) of the dipole position, shape(3,)
or(1, 3)
.moment (
Union
[ndarray
,Tuple
[float
,float
,float
]]) – Dipole moment(mx, my, mz)
in units of amps * meters ** 2, shape(3,)
or(1, 3)
.
- Returns:
An array with shape
(3, )
ifx, y, z
are scalars, or shape(n, 3)
ifx, y, z
are vectors with shape(n, )
.- Return type:
Magnetic field
(Bx, By, Bz)
in Tesla evaluated at(x, y, z)
- superscreen.sources.dipole_distribution(x, y, z, *, dipole_positions, dipole_moments, component=None, length_units='um', moment_units='mu_B')[source]¶
Returns the 3D field \(\vec{B}=\mu_0\vec{H}\), or one of its components, from a distribution of dipoles with given moments (in units of the Bohr magneton) located at the given positions, evaluated at coordinates
(x, y, z)
.- Parameters:
x (
Union
[float
,ndarray
]) – x-coordinate(s) (in meters) at which to evaluate the field. Either a scalar or vector with shape(n, )
.y (
Union
[float
,ndarray
]) – y-coordinate(s) (in meters) at which to evaluate the field. Either a scalar or vector with shape(n, )
.z (
Union
[float
,ndarray
]) – z-coordinate(s) (in meters) at which to evaluate the field. Either a scalar or vector with shape(n, )
.dipole_positions (
ndarray
) – Coordinates(x0_i, y0_i, z0_i)
of the position of each dipolei
, shape(m, 3)
(in meters) .dipole_moments (
Union
[ndarray
,Tuple
[float
,float
,float
]]) – Dipole moments(mx_i, my_i, mz_i)
in units of amps * meters ** 2. If dipole_moments has shape(3, )
or(1, 3)
, then all dipoles are assigned the same moment. Otherwise, dipole_moments must have shape(m, 3)
, i.e. the moment is specified for each dipole.component (
Optional
[str
]) – The component of the magnetic field to return: “x”, “y”, “z”, or None. If None, the vector magnetic field (shape(n, 3)
) is returned.length_units (
str
) – The units for the positions coordinatesx
,y
,z
, anddipole_positions
.moment_units (
str
) – The units fordipole_moments
, for example the Bohr magneton “mu_B” or SI base units “A * m ** 2”.
- Return type:
- Returns:
Magnetic field
(Bx, By, Bz)
(or one of its components) in Tesla evaluated at(x, y, z)
: An array with shape(3, )
ifx, y, z
are scalars, or shape(n, 3)
ifx, y, z
are vectors with shape(n, )
.
SheetCurrentField¶
- superscreen.sources.SheetCurrentField(*, sheet_positions, current_densities, z0, length_units='um', current_units='uA')[source]¶
Returns a Parameter that computes the z-component of the field from a 2D sheet of current parameterized by the given positions and current densities.
The \(z\)-component of the field from a 2D sheet of current \(S\) lying in the plane \(z=z_0\) with spatially varying current density \(\vec{J}=(J_x, J_y)\) is given by:
\[\mu_0H_z(\vec{r})=\frac{\mu_0}{4\pi}\int_S \frac{J_x(\vec{r}')(\vec{r}-\vec{r}')\cdot\hat{y} - J_y(\vec{r}')(\vec{r}-\vec{r}')\cdot\hat{x}} {|\vec{r}-\vec{r}'|^3}\,\mathrm{d}^2r',\]where \(\vec{r}=(x, y, z)\) and \(\vec{r}'=(x', y', z_0)\).
- Parameters:
sheet_positions (
ndarray
) – Coordinates(x0, y0)
(in meters) of the current sheet, shape(m, 2)
.current_densities (
ndarray
) – 2D current density(Jx, Jy)
in units of amps / meter, shape(m, 2)
.z0 (
float
) – Vertical (z) position of the current sheet.length_units (
str
) – The units for all coordinates.current_units (
str
) – The units for current values. Thecurrent_densities
are assumed to be in units ofcurrent_units / length_units
.
- Return type:
- Returns:
A Parameter that computes \(\mu_0\vec{H}_z(x, y, z)\) in Tesla for a given sheet current.
- superscreen.sources.biot_savart_2d(x, y, z, *, positions, current_densities, z0=0, areas=None, length_units='um', current_units='uA', vector=True)[source]¶
Returns the magnetic field (in tesla) from a sheet of current located at vertical positon
z0
(in units oflength_units
). The current is parameterized by a set ofcurrent_densities
(in units ofcurrent_units / length_units
) and x-ypositions
(in units oflength_units
), and the field is evaluated at coordinates(x, y, z)
.\[\begin{split}\mu_0H_x(\vec{r}) &= \frac{\mu_0}{4\pi}\int_S \frac{J_y(\vec{r}')(\vec{r}-\vec{r}')\cdot\hat{z}} {|\vec{r}-\vec{r}'|^3}\,\mathrm{d}^2r'\\ \mu_0H_y(\vec{r}) &= \frac{\mu_0}{4\pi}\int_S -\frac{J_x(\vec{r}')(\vec{r}-\vec{r}')\cdot\hat{z}} {|\vec{r}-\vec{r}'|^3}\,\mathrm{d}^2r'\\ \mu_0H_z(\vec{r}) &= \frac{\mu_0}{4\pi}\int_S \frac{J_x(\vec{r}')(\vec{r}-\vec{r}')\cdot\hat{y} - J_y(\vec{r}')(\vec{r}-\vec{r}')\cdot\hat{x}} {|\vec{r}-\vec{r}'|^3}\,\mathrm{d}^2r'\end{split}\]where \(\vec{r}=(x, y, z)\) and \(\vec{r}'=(x', y', z_0)\).
- Parameters:
x (
Union
[float
,ndarray
]) – x-coordinate(s) at which to evaluate the field. Either a scalar or vector with shape(n, )
.y (
Union
[float
,ndarray
]) – y-coordinate(s) at which to evaluate the field. Either a scalar or vector with shape(n, )
.z (
Union
[float
,ndarray
]) – z-coordinate(s) at which to evaluate the field. Either a scalar or vector with shape(n, )
.positions (
ndarray
) – Coordinates(x0, y0)
of the current sheet, shape(m, 2)
.current_densities (
ndarray
) – 2D current density(Jx, Jy)
, shape``(m, 2)``.z0 (
float
) – Vertical (z) position of the current sheet.areas (
Optional
[ndarray
]) – Vertex areas forpositions
in units oflength_units**2
. If None, thepositions
are triangulated to calculate vertex areas.length_units (
str
) – The units for all coordinates.current_units (
str
) – The units for current values. Thecurrent_densities
are assumed to be in units ofcurrent_units / length_units
.vector (
bool
) – Return the full vector magnetic field (shape(n, 3)
) rather than just the z-component (shape(n, )
).
- Return type:
- Returns:
Magnetic field in tesla evaluated at
(x, y, z)
. Ifvector
is True, returns the vector magnetic field \(\mu_0\vec{H}\) (shape(n, 3)
). Otherwise, returns the the \(z\)-component, \(\mu_0H_z\) (shape(n,)
).